lunes, 30 de junio de 2008

Ángulo


Ángulo llano o extendido [editar]

El ángulo llano tiene una amplitud de  \pi \, rad (equivalente a 180º).

Ángulo cóncavo o reflejo [editar]

El ángulo cóncavo o reflejo, es el que mide más de  \pi\, rad y menos de  2 \pi\, rad (esto es, más de 180º y menos de 360°)

Ángulo completo o perigonal [editar]

Un ángulo completo o perigonal, tiene una amplitud de  2\pi\, rad (equivalente a 360º)

Ángulos en el espacio vectorial

Dado un espacio vectorial, cuyo cuerpo es el conjunto de los números reales y en el que existe un producto escalar entre vectores, se define el ángulo formado por dos vectores no nulos por la expresión:

\cos \theta_{xy} = \frac{\langle x, y \rangle}{\|x\| \|y\|}

Si el cociente anterior es 0, se dice que ambos vectores son ortogonales.

Ángulo


Se denomina ángulo, en el plano, a la porción de éste comprendida entre dos semirrectas que tienen un origen común denominado vértice. Coloquialmente, ángulo es la figura formada por dos rayos con origen común. Así, un ángulo determina una superficie abierta (subconjunto abierto de puntos del plano), al estar definido por dos semirrectas, denominándose medida del ángulo a la amplitud de estas semirrectas.


Definiciones clásicas

Euclides define un ángulo como la inclinación mutua de dos líneas que se encuentran una a otra en un plano y no están en línea recta. Según Proclus un ángulo debe ser una calidad o una cantidad, o una relación. El primer concepto fue utilizado por Eudemus, que describió un ángulo como desviación de una línea recta; el segundo por Carpus de Antioch, que lo vio como el intervalo o el espacio entre las líneas que se intersecaban; Euclides adoptó un tercer concepto, aunque sus definiciones de ángulos rectos, agudos, y obtusos son cuantitativas.

Las unidades de medida de ángulos [editar]

Las unidades utilizadas para la medida de los ángulos del plano son:

Los ángulos se pueden medir mediante utensilios tales como el goniómetro, el cuadrante, el sextante, la ballestina, el transportador de ángulos o semicírculo graduado, etc.


Clasificación de ángulos planos


angulo agudo:

Es el ángulo formado por dos semirrectas con amplitud mayor de 0 rad y menor de \frac{\pi}{2} rad (mayor de 0º y menor de 90º).
Al punto de inicio o de encuentro, se le llama vértice.


Ángulo recto [editar]

Los dos lados de un ángulo recto son perpendiculares entre sí.
La proyección ortogonal de uno sobre otro es un punto, que coincide con el vértice.

Ángulo obtuso [editar]

Un ángulo obtuso es aquel cuya amplitud es mayor a \frac{\pi}{2} rad y menor a \pi\, rad (mayor a 90º y menor a 180º).



Cálculo de la superficie de un triángulo

La superficie de un triángulo se obtiene multiplicando la base por la altura (donde la altura es un segmento perpendicular que parte de la base hasta llegar al vértice opuesto) y dividiendo en dos. Siendo b la longitud de cualquiera de los lados del triángulo y h la distancia perpendicular entre la base y el vértice opuesto a esa base la superficie S queda expresada del siguiente modo:

S =\frac{bh}{2} = \frac{base \cdot altura}{2}

Si conocemos las longitudes de los lados del triángulo (a, b, c) es posible calcular la superficie empleando la fórmula de Herón.

S = \sqrt{p(p-a)(p-b)(p-c)}

donde p = ½ (a + b + c) es el semiperímetro del triángulo.

Reescribiendo la fórmula anterior obtenemos: (suponiendo abc )

S = {1\over{4}}\sqrt{(a+(b+c)) (c-(a-b)) (c+(a-b)) (a+(b-c))}

Otra forma de calcular el área es:

S = {1\over{2}}{ab(sen \gamma\,)}

donde a y b son dos lados del triangulo y \gamma\, es el ángulo comprendido entre ellos.



Triángulo

Un triángulo, en geometría, es un polígono de tres lados; está determinado por tres segmentos de recta que se denominan lados, o tres puntos no alineados que se llaman vértices.

Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se llama triángulo geodésico.


Los tres ángulos internos de un triángulo miden 180° en geometría geometría euclidiana.[1

Propiedades de los triángulos:


  • En los triángulos contenidos en un plano, la suma de todos los ángulos internos, es igual a 180°.
  • La suma de las longitudes de dos de sus lados es siempre mayor que la longitud del tercer lado.
  • Para cualquier triángulo se verifica el Teorema del seno que establece: «Los lados de un triángulo son proporcionales a los senos de los ángulos opuestos»:
\frac{a}{\operatorname{sen}(\alpha\,)} = \frac{b}{\operatorname{sen}(\beta\,)} = \frac{c}{\operatorname{sen}(\gamma\,)}







  • Para cualquier triángulo se verifica el Teorema del coseno que demuestra que «El cuadrado de un lado es igual a la suma de los cuadrados de los otros lados menos el doble del producto de estos lados por el coseno del ángulo comprendido»:
a^2=b^2+c^2-2bc \cdot cos(\alpha\,)\,
b^2=a^2+c^2-2ac \cdot \cos(\beta\,)\,
c^2=a^2+b^2-2ab \cdot \cos(\gamma\,)\,
  • Para cualquier triángulo rectángulo, cuyos catetos miden a y b, y cuya hipotenusa mida c, se verifica el Teorema de Pitágoras:
  a^2 + b^2 = c^2  \,


Centros del triángulo

geometricamente se puede definir varios centros de un triangulo:

El único caso en que estos tres centros coinciden en un único punto es en un triángulo equilátero.


Clasificación de los triángulos:


Por la longitud de sus lados se clasifican en:


escaleno

equilatero




isosceles

Por la amplitud de sus ángulos:

  • Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa.
  • Triángulo oblicuángulo: cuando no tiene un ángulo interior recto (90°).
    • Triángulo obtusángulo: si uno de sus ángulos es obtuso (mayor de 90°); los otros dos son agudos (menor de 90°).
    • Triángulo acutángulo: cuando sus tres ángulos son menores a 90°; el triángulo equilátero es un caso particular de triángulo acutángulo.


rectangulo* obtusangulo* acutangulo*

Además, tienen estas denominaciones y características:

Los triángulos acutángulos pueden ser:

  • Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro distinto, este triángulo es simétrico respecto de su altura diferente.
  • Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene ejes de simetría.

Los triángulos rectángulos pueden ser:

  • Triángulo rectángulo isósceles: con un angulo recto y dos agudos iguales (de 45 cada uno), dos lados son iguales y el otro diferente, naturalmente los lados iguales son los catetos, y el diferente es la hipotenusa, es simétrico respecto a la altura que pasa por el ángulo recto hasta la hipotenusa.
  • Triángulo rectángulo escaleno: tiene un ángulo recto y todos sus lados y ángulos son diferentes.

Los triángulos obtusángulos son:

  • Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los que parten del ángulo obtuso, el otro lado es mayor que estos dos.
  • Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.


isósceles escaleno






lunes, 23 de junio de 2008

aritmetica recreativa

UN BREVE ESBOZO SOBRE LA ARITMETICA

Jorge Castro Briones

El concepto de número, tan familiar para nosotros, se elaboró muy lentamente. Nos podemos formar un juicio sobre lo anterior, si se toma en cuenta cómo contaban aquellas pueblos que todavía hace poco tiempo se hallaban en diversos grados de un régimen primitivo-comunal. En algunos de tales pueblos no existían aún nombres para los números mayores que el dos o el tres; en otros, el cantar se prolongaba un paco más, pero en una forma o en otra éste finalizaba, comparativamente, de manera rápida, y sobre el número en general dichos pueblos decían simplemente, "mucho" a "innumerable". Esto muestra que la asimilación por los hombres de números claramente distintos, se llevó a cubo gradualmente.

Al principio los hombres no poseían el concepto de número, aunque podían, a su manera, opinar sobre las dimensiones de uno u otro conjunto de objetos que encontraban en su práctica. Es necesario considerar que el número era percibido por ellos directamente como una propiedad inalienable de un conjunto de objetos, propiedad que sin embargo, aún no descubrían claramente. Nosotros estamos a tal grado habituados a contar, que es poco probable que nos podamos representar esto; sin, embargo, lo comprendemos.

En un grado más alto, el número se muestra ya como una propiedad de un conjunto de objetos, pero aún no se separa de él como "número abstracto", como el número en general, no relacionado con objetos concretos. Esto es evidente en virtud de la existencia en ciertos pueblos, de nombres de números tales como "mano" para el cinco, "todo el hombre" para el veinte, etc. Aquí el cinco se entiende no abstractamente, sino en el sentido de "tanto, como dedos haya en la mano"; el veinte "tanto, como todos los dedos del hombre", etc. En forma completamente análoga, en ciertos pueblos no existían, por ejemplo, los conceptos "negro", "sólido", "redondo". Para indicar que un objeto era negro, lo comparaban, supongamos, con un cuervo, y para indicar que se tenían cinco objetos, comparaban directamente dichos objetos con la mano. Ocurrió precisamente de manera que diferentes nombres de números se empleaban para diversos géneros de objetos: unos números para contar hombres, otros para contar barcas y así sucesivamente hasta diez clases diferentes de números. Aquí no hay números abstractos, puesto que se presentan como "concretos" que se relacionan a un determinado género de objetos. En otros pueblos, en general, no existen nombres especiales para los números; por ejemplo, no existe la palabra "tres" aunque ellos pueden decir :"tres hombres", "en tres lugares", etc.

Análogamente a esto, con facilidad decirnos que este u otro objeto son negros, pero muy raramente hablamos sobre 1a "negrura" en si, ya que éste es un concepto que se muestra más abstracto.

En relación con lo anterior conviene observar que, en la formación de los conceptos sobre las propiedades de los objetos, sea el color o la numerabilidad de un conjunto, se pueden distinguir tres grados, los cuales además, no es posible delimitar estrictamente. En el primer grado la propiedad se determina por una comparación directa de objetos: igual como el cuervo; tanto, como en la mano. En el segundo grado aparece el adjetivo: la piedra negra, y análogamente el numeral cinco árboles, etc. En el tercer grado la propiedad se abstrae de los objetos y puede figurar "como tal", como "negrura", como el número abstracto "cinco", etcétera.

Para poder descubrir y separar claramente esta propiedad general, es decir, para formar el concepto sobre uno u otro número y darle el nombre "seis", "diez", etc., fue necesario comparar entre sí muchos conjuntos de objetos. Los hombres contaron en el transcurso de largas generaciones repitiendo millones de veces una y la misma operación. De ese modo, en la práctica, descubrieron los números y las relaciones entre ellos.

Las operaciones con los números surgieron, a su vez, como la reflexión de las operaciones reales con los objetos concretos. Esto es patente también en los nombres de los números. Así, por ejemplo, entre ciertos indígenas el número "veintiséis" se pronuncia como "encima de dos decenas yo coloco un seis". Es claro que aquí se refleja el método concreto de contar los objetos. Tanto más claro es, que la adición de números corresponde a la suma, a la unión de dos o varios conjuntos en uno. Igualmente, es fácil ver el significado concreto de la sustracción, de la multiplicación y de la división (1a multiplicación en particular, parece tener su origen principalmente en la necesidad de contar conjuntos iguales: 2 veces, 2 veces, etc.)

Los hombres descubrieron y asimilaron, en el proceso de contar, no solamente relaciones entre números particulares, como por ejemplo, que dos y tres son cinco, sino establecieron también gradualmente, leyes generales. En la práctica descubrieron que la suma no depende del orden de los sumandos, o que el resultado de contar objetos dados no depende del orden en que se efectúe dicha cuenta. (Esta última circunstancia encuentra expresión en 1a coincidencia de los números "ordinales" y "cardinales": primero, segundo, etc., y uno, dos, etc.). En esta forma, los números aparecieron, no como aislados e independientes, sino en relación unos con otros.

Unos números se expresan por medio de otros, tanto en los nombres como en la escritura. Así 32 denota "treinta y dos", en francés 90 representa "cuatro veintes y diez (quatre-vingt-dix)" y, por ejemplo, las cifras romanas VIII, IX denotan que 8 = 5 + 3, 9 = 10 - 1.

En general, surgieron no simplemente números particulares, sino un sistema de números con sus relaciones y leyes.

El objeto de la aritmética lo constituye, precisamente, el sistema de números con sus relaciones y leyes. (Históricamente la palabra "aritmética" procede del griego "arte del contar" de "aritmos": número y "texne": arte). Un número abstracto aislado, no tiene en sí propiedades ricas en contenido, y es poco lo que puede decirse acerca de él, si nos preguntamos, por ejemplo, acerca de las propiedades del número 6, observamos que 6 = 5 + 1, que 6 = 3 ´ 2, que 6 es un divisor de 30, etc. Pero en todos los caos el número 6 se relaciona con otros números, de suerte que las propiedades de un número dado se manifiestan precisamente, en su relación con otros números. Tanto más claro es, quo toda operación aritmética determina una liga, o en otras palabras, una relación entre números.

En esta forma, la aritmética tiene que ver con las relaciones entre números. Pero las relaciones entre números son formas abstractas de las relaciones cuantitativas reales entre los conjuntos de objetos, razón por la cual se puede decir que: La Aritmética es la ciencia que trata sobre las relaciones cuantitativas reales, consideradas sin embargo, abstractamente o, como se dice, en forma pura.

Como vemos, la aritmética no procede del pensamiento puro, según pretenden hacer creer los idealistas, sino quo refleja determinadas propiedades de las cosas reales: ella ha surgido como resultado de una larga experiencia práctica de numerosas generaciones.

Cuanto más vasta y compleja se hace la práctica social, tanto más amplios son los problemas que se, plantea. Ha sido necesario, no sólo registrar la cantidad de objetos y cambiarla por el pensamiento de su número, lo que ya requería de la formación del concepto de número y de los

nombren de los números, sino además, aprender a contar todos los grandes conjuntos (sean animales en manadas, objetos en el trueque, días hasta un plazo señalado, etc.), fijar, y transmitir otros resultados del contar, lo que justamente requirió también el perfeccionamiento de los nombres, y posteriormente el de las notaciones de los números.

La introducción de las notaciones para los números, que principia aparentemente desde el propio nacimiento de la lengua escrita, ha jugado un inmenso papel en el desarrollo de la aritmética. Además, éste fue el primer paso hacía los signos y las fórmulas matemáticas en general. El siguiente paso, que consistió en la introducción de los signos para las operaciones aritméticas y la notación literal (x) para la incógnita, fue efectuado mucho después.

El concepto de número, como todo concepto abstracto, no tiene una imagen directa, no es posible representarle, y sólo se puede pensar. Pero el pensamiento se formula en el lenguaje, por lo que sin nombres no existen conceptos. La notación es el mismo nombre, sólo que no sonoro, sino escrito, y reproduce al pensamiento en forma de una imagen visual. Por ejemplo, si yo digo "siete" ¿qué se representa Ud.? Probablemente no siete objetos cualesquiera, sino ante todo la cifra "7"; ésta sirve, precisamente, de cubierta material para el número abstracto "siete". Y un número como por ejemplo, 18273, es visiblemente más difícil de pronunciar que de escribir, y es ya completamente imposible representarlo, con total exactitud, en forma de un conjunto de objetos. De esta manera, las notaciones ayudaron a crear el concepto sobre aquellos números que ya no es posible descubrir en la simple observación y en el acto directo de contar. En esto estaba la necesidad práctica: con la aparición del estado fue necesario recaudar impuestos, reunir y suministrar tropas, etc., lo que requería operaciones con números muy grandes.

Así, en primer lugar, el papel de las notaciones para los números consiste en que ellas dan una encarnación sencilla del concepto de número abstracto. (Vale la pena observar que el concepto sobre los números, que como hemos visto se elaboró con tan gran trabajo durante un tiempo excesivamente largo, es comprendido ahora por un niño de una manera comparativamente fácil. ¿Por qué? En primer lugar, naturalmente, porque el niño oye y ve cómo los adultos utilizan constantemente los números e inclusive le enseñan eso. Y en segundo lugar, porque -y precisamente sobre esto deseamos llamar la atención, el niño tiene palabras y notaciones hechas para los números. El, al principio, estudia estas formas exteriores del número, y después estudia ya su significado. ) Tal papel de las notaciones matemáticas es general: suministran una personificación de los conceptos matemáticos abstractos. En esta forma, + significa adición, a un número desconocido, a cualquier número dado, etc. En segundo lugar, las notaciones de los números dan la posibilidad de efectuar, en una forma particularmente sencilla, las operaciones con ellos. Todos saben hasta qué punto es más fácil "calcular sobre el papel" que "en la mente". Igual valor tienen los sitos y fórmulas matemáticas en general: permiten substituir parte de los razonamientos de los cálculos haciéndolos casi mecánicos. Con respecto a eso mismo, si el cálculo está escrito, posee ya una determinada seguridad. Allí todo es evidente, todo se puede comprobar, todo se determina por reglas exactas. Como ejemplo puede recordarse la adición "por columnas" o cualquier transformación algebraica como por ejemplo, "el traslado al otro miembro de la igualdad se efectúa por el cambio de signo".

De lo señalado es claro que sin notaciones convenientes para los números, la aritmética no habría podido avanzar mucho en su desarrollo. Tanto más que la matemática moderna sería sencillamente imposible sin los signos y fórmulas especiales.

Por sí mismo es comprensible la imposibilidad de que los hombres hayan podido producir, en un momento dado, el tan conveniente método moderno de escritura de los números. Desde los tiempos antiguos, en los diversos pueblos con rudimentos de cultura, aparecieron diferentes notaciones numéricas poco parecidas, a nuestras notaciones modernas, no sólo por lo que al trazado de los signos se refiere, sino también en cuanto a los principios; por ejemplo, no en todas partes se empleaba el sistema decimal (entre los antiguos babilonios existía un sistema decimal y sexagesimal mixto). En la tabla adjunta se muestran, en calidad de ejemplo, algunas de las notaciones de los números en diversos pueblos. En particular, vemos que los antiguos griegos, y posteriormente también los rusos, utilizaron notaciones alfabéticas. Nuestras cifras "arábigas" modernas, y en general el método de escritura de las números, procede de la India, de donde fue llevado por los árabes a Europa en el siglo X, en donde finalmente arraigó en el, transcurso de varios siglos.

La primera particularidad de nuestro sistema consiste en que es decimal. Pero dicha particularidad no es esencial, porque puede ser empleado con éxito digamos, un sistema duodecimal, introduciendo notaciones especiales para el diez y el once.

La principal particularidad de nuestro sistema de notaciones consiste en que es "posicional", es decir, en él una misma cifra tiene diferente valor en función del lugar que ocupa. Así, por ejemplo, en la notición 372 la cifra 3 representa el número de las centenas, y el 7 el número de las decenas. Tal procedimiento de escritura no sólo es breve y sencillo, sino que también facilita al extremo los cálculos. Las notaciones romanas son mucho menos convenientes el mismo número 372 en romano se escribe así: CCCLXXII, y el multiplicar grandes números escritos en romano, es totalmente inconveniente.

La escritura posicional de los números requiere que se distinga el orden vacío, pues de no ser así, entonces confundiríamos, por ejemplo, el trescientos uno y el treinta y uno. En el lugar del orden vacío se coloca un cero; en esta forma diferenciamos 301 y 31. E1 cero aparece ya en forma rudimentaria, en las tardías escrituras cuneiformes babilónicas. La introducción sistemática del cero fue un logro de los hindúes.(El primer manuscrito hindú en donde se halla el cero, se remonta a1 final del siglo IX; en él, la escritura del numero 270 corresponde exactamente a la de nuestras notaciones. Sin embargo, probablemente el cero se introdujo en la India ya, anteriormente, en el siglo VI): esto permitió conducir hasta el final el sistema posicional de escritura de los números, el cual empleamos en la actualidad.

Pero aún hay más: el cero se hizo también un número, al penetrar en el sistema de los números. Por sí mismo, el cero es la nada, en lengua sánscrita (antiguo hindú) llama precisamente cunga "(vacio)", pero en relación con otros números, el cero adquiere contenido, gana propiedades conocidas, como aquella de que cualquier número más cero da el mismo número, y multiplicado por cero es cero.

En lo referente a la aritmético de los antiguos, se puede decir que los textos matemáticos más ancestrales de Babilonia y Egipto que han llegado hasta nosotros, se remontan al segundo milenio anterior a nuestra era. Ellos y los textos más tardíos, contienen diversos problemas aritméticos con resoluciones, inclusive algunos que hoy pertenecen al álgebra, como son las resoluciones de ciertas ecuaciones cuadráticas y aún cúbicas o de progresiones (todo esto, naturalmente, sobre problemas concretas y ejemplos numéricos). De Babilonia han llegado también hasta nosotros, tabla de cuadrados, cubos, y números inversos. Existe la suposición de que allí ya se habían formado intereses matemáticos que no estiban relacionados directamente con problemas prácticos particulares.

En todo caso, en la Babilonia y el Egipto antiguos la aritmética estaba muy desarrollada. Pero no tenía aún el carácter de una teoría matemática de los números, sino más bien era un conjunto de reglas para el cálculo y la resolución de diferentes problemas. Por otra parte, así se enseña la aritmética en la escuela primaria actual, y así la conciben todos aquellos que no se dedican, en especial, a la matemática. Esto es completamente legitimo, pero sin embargo, en esto forma la aritmética aún no es una teoría matemática: en ella no existen teoremas generales sobre los números.

El paso a 1a aritmética teórica se efectuó en una forma gradual.

Las notaciones, como ya se dijo, dan la posibilidad de operar con los números grandes que ya no es posible representar claramente en forma de conjuntos de objetos, y hasta los cuales no es factible llegar contando de uno en uno a partir de la unidad. Si entre las tribus salvajes los números se interrumpen en e1 3, 10, 100, etc., y después sigue el indeterminado "muchos", las notaciones posibilitaron en China, Babilonia y Egipto, el avanzar más allá de las decenas de millares, e inclusive después del millón. Aquí ya se manifiesta la posibilidad de una prolongación ilimitada de la serie de números. Pero no fue comprendida con claridad inmediata, y no se sabe con certeza cuando ocurrió ello. Ya el gran matemático, físico e ingeniero griego Arquímedes (287 - 212 a.n.e.) quien anticipó genialmente algunas ideas y métodos de la matemática superior, en su célebre obra "Sobre el cálculo de la arena" indicó un método, para denominar a un número mayor que el número de granos de arena que podría caber en la "esfera de las estrellas fijas". La posibilidad de nombrar y escribir tal número, vale decir, aún requirió en ese tiempo una explicación detallada.

Hacia el siglo III antes de nuestra era, los griegos tenían ya plena conciencia de dos importantes ideas: en primer lugar, que la serie de los números se puede prolongar ilimitadamente, y en segundo lugar, que se puede operar, no sólo con cualesquiera números dados, sino también razonar sobre los números en general, formulando y demostrando teoremas generales sobre los mismos. Esto era una generalización de la enorme experiencia anterior en la operación con los números concretos. Con motivo de esta experiencia, aparecieron leyes generales y métodos de los razonamientos generales sobre los números. En estas condiciones se produjo el paso a un grado más alto de la abstracción: de números particulares dados (aunque también abstractos) al número en general, a cualquier posible número.

Del sencillo proceso de contar los objetos uno por uno, pasamos a la noción acerca del proceso ilimitado de formación de los números, por medio de la adición de la unidad a un número construido anteriormente. La serie de los números se piensa ya como prolongación ilimitada, y con ello entra el infinito a la matemática. Naturalmente, de hecho, no podemos penetrar tan lejos como fuera deseable en la serie de los números por medio de la adición de unidades: ¿quién puede contar hasta un millón de millones, si inclusive cien años contienen casi 40 veces menos segundos? Pero esta no es la cuestión. El proceso de acumulamiento de unidades, el proceso de formación de cuantos grandes conjuntos de objetos fueran deseables, no está fundamentalmente limitado y, vale decir, es una posibilidad potencial de la prolongación ilimitada de la serie numérica. Los teoremas generales sobre los números tocan ya esta serie mencionada.

Los teoremas generales sobre cualquier propiedad de todo número, ya contienen en forma implícita afirmaciones sobre las propiedades de los números particulares, y son ricos en aseveraciones específicas que pueden verificarse para los números aislados. Por tal motivo, los teoremas generales deben demostrarse por medio de razonamientos generales que partan de la propia ley de formación de la serie numérica. Aquí se revela una profunda particularidad de la matemática: ella tiene como objetivo, no sólo relaciones cuantitativas dadas, sino en general, las relaciones cuantitativas posibles y, vale decir, el infinito.

En esta forma la aritmética se convierte en la teoría de los números. Esta se abstrae ya de los problemas particulares concretos, y se enfoca hacia el dominio de los conceptos y razonamientos abstractos, convirtiéndose con ello, en rama de la matemática "pura". Más exactamente este fue también el momento del nacimiento de la matemática pura con todas sus particularidades (su carácter abstracto, su gran rigorismo, su amplia aplicación en otras ciencias y en la técnica, etc.). Es necesario observar, por cierto, que la matemática pura nació simultáneamente, a partir de la aritmética y de la geometría. Además, en las reglas generales de la aritmética se tienen ya gérmenes del álgebra, la cual se separó posteriormente de aquella.

En la actualidad, el desenvolvimiento de la matemática en conjunto tiene gran influencia sobre el desarrollo de la aritmética y de las ciencias contiguas a ella, lo que se ha manifestado, por ejemplo, en la construcción axiomática de la aritmética, es decir, en la sistematización de la misma sobre la base de un cierto número de axiomas.

Por otra harte, los procedimientos y métodos de cálculo utilizados en la aritmética, han obtenido un amplio desarrollo y aplicación en las técnicas matemáticas modernas de cálculo, lo cual queda evidenciado en las bases aritméticas de la forma de representación de los números, lo que involucra el estudio de los diversos sistemas de numeración, en las máquinas calculadoras numéricas electrónicas modernas.

Finalmente, por medio de una tabla cronológica trataremos de presentar un esquema histórico del desarrollo, en especial, de la aritmética, así como de algunas ramas contiguas a la misma y de diversos aspectos del desenvolvimiento de la técnica que, en forma directa o indirecta, contribuyeron a la aparición de los números, de las relaciones entre ellos y como resultado de esto, a la creación de la aritmética ya con los rasgos característicos de una ciencia matemática.

Debe mencionarse que la formación de "la tabla cronológica debe, en gran medica a la labor ingente de recopilación y ordenamiento del Sr. Alfonso Linares F., que es Egresado (egresado, -da. m., f. Amér. Persona que sale de un establecimiento docente después de haber terminado sus estudios. ) de la Escuela Superior de Ingeniería Mecánica y Eléctrica del Instituto Politécnico Nacional (nota del traductor y autor del Breve Esbozo...)

Tabla 1. Notaciones de los números en los diversos pueblos.
Tabla tomada del artículo de I. G. Bashmakov y A. P. Iushkievich "Origen de los Sistemas de Numeración (Enciclopedia de la Matemática Fundamental)Tomo I, Moscú, 1951





Tabla 3


Tabla 4


Tabla5


1

Factorar una expresión que es el cubo de un binomio

P r o c e d i m i e n t o

El desarrollo del cubo de un binomio es:
MathType 5.0 Equation
En esta clase de ejercicios se nos da una expresión como el miembro derecho de las identidades anteriores, es decir un cuadrinomio; y debemos constatar si se trata de un cubo perfecto de binomios (como los miembros izquierdos de las expresiones anteriores); para lo cual debemos proceder de la siguiente manera:
1. Se ordena el cuadrinomio en forma descendente o ascendente respecto a una letra
2. Se extrae la raíz cúbica del primero y cuarto términos del cuadrinomio
3. Se observa si todos los signos son positivos o si se alternan positivo-negativo-positivo-negativo
4. Se triplica el cuadrado de la raíz cúbica del primer término por la raíz cúbica del cuarto término y se compara con el segundo término del cuadrinomio dado
5. Se triplica la raíz cúbica del primer término por el cuadrado de la raíz cúbica del cuarto término y se compara con el tercer término del cuadrinomio dado
6. Si las dos comparaciones hechas en los pasos 4 y 5 son positivas, se trata del desarrollo del cubo de un binomio y se factoriza como tal: dentro de un paréntesis se escriben las raíces cúbicas del primero y cuarto términos del cuadrinomio y separadas por el signo más o por el signo menos, según el caso; y se eleva al cubo el paréntesis
7. Si las dos comparaciones hechas en los pasos 4 y 5 son negativas, no se trata del desarrollo del cubo de un binomio y no se puede factorizar como tal

Factorar:

MathType 5.0 Equation

MathType 5.0 Equation