Un geómetra como Riemann pudo casi haber previsto las características más importantes del mundo actual.
A. S. Eddington
Breselenz, actual Alemania, 1826-Selasca, Italia, 1866) Matemático alemán. Su padre era pastor luterano, y su primera ambición fue la de seguir sus pasos. Ingresó en el liceo de Hannover, donde estudió hebreo y trató de probar la certeza del libro del Génesis por medio de razonamientos matemáticos. En 1846 ingresó en la Universidad de Gotinga, que abandonó un año después para trasladarse a la de Berlín y estudiar bajo la tutela de, entre otros, Steiner, Jacobi y Dirichlet (quien ejerció una gran influencia sobre él).
Su carrera se interrumpió por la revolución de 1848, durante la cual sirvió al rey de Prusia. En 1851 se doctoró en Gotinga, con una tesis que fue muy elogiada por Gauss, y en la que Riemann estudió la teoría de las variablea complejas y, en particular, lo que hoy se denominan superficies de Riemann, e introdujo en la misma los métodos topológicos.
En su corta vida contribuyó a muchísimas ramas de las matemáticas: integrales de Riemann, aproximación de Riemann, método de Riemann para series trigonométricas, matrices de Riemann de la teoría de funciones abelianas, funciones zeta de Riemann, hipótesis de Riemann, teorema de Riemann-Roch, lema de Riemann-Lebesgue, integrales de Riemann-Liouville de orden fraccional..., aunque tal vez su más conocida aportación fue su geometría no euclidiana, basada en una axiomática distinta de la propuesta por Euclides, y expuesta detalladamente en su célebre memoria Sobre las hipótesis que sirven de fundamento a la geometría.
No hay comentarios:
Publicar un comentario